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1 Introduction

A generalized linear model (GLM) describes the expected value of a response
variable y with a link function g and a linear combination of K − 1 feature
variables xk (for K parameters including the intercept term).

g(E[y]) ∼ β0 + β1x1 + . . .+ βK−1xK−1

The definition x0 ≡ 1 is used so that with x⊺ ≡ [1, x1, . . . , xK−1] and β⊺ ≡
[β0, β1, . . . βK−1] the above equation is written as the following.

g(E[y]) = x⊺β

The linear predictor is defined as ω = x⊺β.
For N observations the response variables can be expressed as a vector y⊺ ≡

[y(1), . . . , y(N)] and the data matrix is

X ≡


1 x

(1)
1 . . . x

(1)
K−1

1 x
(2)
1 . . . x

(2)
K−1

...
...

. . .
...

1 x
(N)
1 . . . x

(N)
K−1

 (1)

so that the matrix components are Xik = x
(i)
k .

2 Exponential family of distributions

The exponential family is a useful class that includes many common elementary
distributions. With a parameterization θ and sufficient statistics T(y), the
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density function of each can be written in a canonical form with a function η(θ)
where η are the natural parameters of the distribution.

f(y;θ) = exp [η(θ) ·T(y)−A(θ) +B(y)]

The function A is the log partition function and is particularly useful when
expressed in terms of the natural parameters.

A(η) = log

[∫
dy eη·T(y)+B(y)

]
The expectation value of the sufficient statistics is given by the gradient of A
with respect to the natural parameters.

E[T(y)] = ∇A(η)

The covariance matrix is given by the Hessian of the log partition function.

Cov[T(y)] = ∇∇⊺A(η)

When the sufficient statistic T and the function η are both the identity, the
distribution is said to be in the natural exponential family.

f(y; θ) = exp[θy −A(θ) +B(y)]

If the canonical link function is used so that θ = x · β then the link function is
determined by the derivative of the log-partition function.

g−1(x · β) = E[y|x,β] = ∂A

∂θ

3 Likelihood function

For a dataset ofN observations {(y(i),x(i))|i ∈ [1, . . . , N ]} the total log-likelihood
function using a canonical-form exponential distribution for y is

l(β|y,X) =

N∑
i=1

η(ω(i)) ·T(y(i))−A
(
η(ω(i))

)
where the B(y) terms have been excluded as they do not affect the dependency
of the likelihood on β.

When multiple sufficient statistics are used T⊺(y) = [T 1(y), T 2(y), . . .] the
natural approach is to make each natural parameter a function of a separate set
of regression parameters ηa = ηa(x⊺βa). The gradient with respect to βa is

∇βa l =

N∑
i=1

x(i)
(
T a(y(i))− E[T a(y(i))|η]

)
ηa′ (2)
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where the fact that ∇ηA(η) = E[T(y)] is used. By definition, the canonical link
function is the one that results from using η = x · β which results in η′ = 1.

The Hessian is given by

∇βa∇⊺
βb l =

N∑
i=1

x(i)x⊺(i)
{
−ηa′Cov

[
T ab(y(i))

∣∣∣η] ηb′
+ δabη

a′′
(
T b(y(i))− E

[
T b(y(i))

∣∣∣η])} (3)

where δab is the Kronecker delta and there is no implicit summation over indices
a, b in the term in the curly brackets.

Often the sufficient statistic is just the response variable itself T(y) = y.
This allows for some simplification of the above equations for the log-likelihood
and its derivatives, while still allowing for a general link function.

l(β|y,X) =

N∑
i=1

η(x⊺(i)β)y(i) −A
(
η(x⊺(i)β)

)
(4)

∇βl =

N∑
i=1

x(i)η′
(
y(i) − E[y(i)|η]

)
(5)

∇β∇⊺
βl =

N∑
i=1

x(i)x⊺(i)
{
−(η′)2Var

[
y(i)
∣∣∣η]+ η′′

(
y(i) − E

[
y(i)
∣∣∣η])} (6)

If in addition the canonical link function is used, η = x · β and g(E[y]) = η.
The above equations simplify further and can be expressed easily in matrix form
to include the sum over observations,

l = y⊺Xβ −
N∑
i=1

A
(
ω(i)

)
(7)

∇βl = X⊺
[
y − g−1(Xβ)

]
(8)

∇β∇⊺
βl = −X⊺SX (9)

where the inverse link function g−1 is applied element-wise and the variance
matrix is diagonal with Sii = Var[y(i)|η]. Even when a non-canonical link
function is used, the term with the 2nd derivative of η is often dropped, as it
can lead to numerical issues if the Hessian is negative. There is a more robust
justification for this involving e.g. Fisher information and expectations, but and
a reference here would be good to add.

4 Dispersion parameter

A useful generalization is to use an overdispersed exponential family. The so-
called dispersion is parameterized by the variable ϕ.

log f(y;θ, ϕ) =
η(θ) ·T(y)−A(θ)

ϕ
+B(y, ϕ)
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One useful feature of this formalism is that the dispersion parameter can some-
times absorb on of the parameters of a multi-parameter distribution, such as
the variance in a normal distribution, allowing the regression to be agnostic of
the absorbed parameter.

The first and second moments of T(y) become the following.

E[T(y)] = ∇A(η) (10)

Cov[T(y)] = ϕ∇∇⊺A(η) (11)

Note that the expression for the expectation value has not changed, but the
variance picks up a factor of ϕ. In the natural case where T(y) = y, the second
derivative of A with respect to the natural parameter η is called the variance
function V (µ) when it can be written as a function of the predicted mean of
the response µ = g−1(x · β).

V (µ) =
∂2A(η)

∂η2

∣∣∣∣
η=η(g(µ))

Expressing the variance as a function of the mean is useful because it is im-
mune to changing the link function. The variance function, like the dispersion
parameter, is unique only up to a constant due to the following relationship.

Var[y] = ϕV (µ)

Allowing the dispersion parameter to be different for each observation also
provides a consistent approach to give each observation separate weights. The
likelihood and its derivatives are adjusted by a factor of 1/ϕ(i) for each sample.
With the weight matrix W defined as a diagonal matrix such that Wii = 1/ϕ(i),
the gradient and Hessian of the likelihood becomes in the natural case

∇βl = X⊺W
[
y − g−1(Xβ)

]
(12)

∇β∇⊺
βl = −X⊺WSX (13)

Correlations between different observations y(i) could be induced by allowing
off-diagonal terms in W. Note that W is reminiscent of the inverse covariance
matrix, at least in the multivariate normal distribution. The Hessian is mani-
festly symmetric so long as W is.

In practice for GLMs, individual weights for observations can be used but
are not typically discussed as observation-dependent dispersions. Instead, the
dispersion parameter is either fixed to one (logistic, exponential) or considered
a free parameter (OLS, gamma). It does not affect the best parameters, but it
does impact other quantities like variance or standardized residuals.

When not fixed to 1, the dispersion parameter is estimated via the total
deviance:

ϕ =
D

N −K
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where K is the number of free parameters in the model. When variance weights1

wi are non-uniform, the unbiased estimator is

ϕw =
1(

1− K
neff

) ΣiwiDi

Σiwi

where neff ≡ (Σw)2

Σw2 is Kish’s effective sample size. The condition for this esti-
mator to be defined changes from K < N in the unweighted case to K < neff

in the weighted case.

5 Comments on computing the link and vari-
ance functions

In the standard description the link function generally relates the expected value
of the response variable to the linear predictor.

g(E[y|ω]) = ω

Once the link function is known, its inverse can be used to quickly get the
expected value given the linear predictor.

E[y|ω] = g−1(ω)

The expected response value, or mean µ, is known either from knowledge of
the standard parameters θ or, assuming a single sufficient statistic y, through
the first derivative of the log-partition function as a function of the natural
parameter η.

µ =
∂A(η)

∂η
for T(y) = [y]

This expression can be inverted to get the natural parameter as a function of
the mean η(µ) = g0(µ) = (A′)−1(µ). To use the canonical link function, the
natural parameter is equal to the linear predictor so that η0(ω) = ω. A different
parameterization can be used for η, which implies a change in the link function.
By comparing the expectation value for two different link functions, the natural
parameter is found for an arbitrary link function g in terms of the canonical
link function g0 and linear predictor ω.

η(ω) = g0
(
g−1(ω)

)
The same function η(µ) can be used to compute the variance function V (µ).

V (µ) =
∂2A(η)

∂η2

∣∣∣∣
η=η(µ)

1also known as analytic weights or reliability weights
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Note that it is unaffected by any transformation s. In fact, by the inverse
function theorem, if η(µ) = t(µ), then the variance function is the reciprocal of
the derivative of t.

V (µ) =
1
∂t
∂µ

If there are multiple sufficient statistics, these statements should all be gen-
eralizable in the obvious way. Instead of a parameter µ we have a vector of
expectation values, and the generalized link function maps these multiple val-
ues to the set of linear predictors, which have the same cardinality. The multiple
natural parameters can still be expressed as functions of these expected values.
The variance function is now a symmetric matrix but there typically should be
nothing stopping it from being expressible in terms of the expected values of
the sufficient statistics; indeed, the multivariate version of the inverse function
theorem should still apply.

See this post for a helpful summary of non-canonical link functions, although
be wary of the differing notation. Another note: When the canonical link
function is used, X⊺y is a sufficient statistic for the whole data set.

NOTE: When the canonical link function allows un-physical values, the Jef-
freys prior may be useful in determining a natural link function. For instance,
the Jeffrey’s prior for the variance of a normal distribution imposes that the
logarithm of the variance is uniformly distributed. This might suggest that the
linear predictor for the variance should be associated with the logarithm of the
variance, i.e. the variance expressed as an exponential function of the linear
predictor.

6 Iteratively re-weighted least squares

Iteratively re-weighted least squares (IRLS) is a useful tool for fitting GLMs
because it is typically relatively straightforward to compute the Jacobian and
Hessian of the likelihood function. The step ∆β in the space of parameters β
is given by the solution to

−H(β) ·∆β = J(β)

where J and H are the Jacobian (gradient) and Hessian of the log-likelihood
function, respectively. The Hessian does not have to be inverted completely;
efficient linear algebra procedures exist to solve symmetric matrix equations of
this form.

This procedure is similar to Newton’s method for the gradient, and (up to
potential numerical issues) it will move towards the point with zero gradient so
long as the likelihood is a concave function. Fortunately in GLM applications
this condition typically holds, especially if the canonical link function is used.

In the case of a canonical link function with scalar sufficient statistic y, this
update rule for ∆β becomes the following.

(X⊺SX)∆β = X⊺
[
y − g−1(Xβ)

]
(14)
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When a weight matrix W is included to include the observations with different
weights, a simple adjustment is needed.

(X⊺WSX)∆β = X⊺W
[
y − g−1(Xβ)

]
(15)

A Hermitian-solve algorithm can be applied to generate successive guess for β
based on the previous guess until a desired tolerance is reached:

(X⊺WSX)βl+1 = X⊺W
[
y − g−1 (Xβl) + SXβl

]
(16)

7 Control variables

In practical applications we often want to control for additional variables where
the effect on the response is known. This can be expressed as an adjustment to
the linear predictors for each observed y(i).

g(E[y(i)]) = ω
(i)
0 + x(i)⊺β

This adjusts the IRLS step to the following.

(X⊺WSX)βl+1 = X⊺W
[
y − g−1 (ω0 +Xβl) + SXβl

]
(17)

8 Regularization

Consider the case where the response variable is linearly separable by the predic-
tor variables in logistic regression. The magnitude of the regression parameters
will increase without bound. This situation can be avoided by penalizing large
values of the parameters in the likelihood function.

With all forms of regularization the scaling symmetry of each xk is broken,
so it is likely useful to center and standardize the data.

Further reading: Regularization paths for GLMs via Coordinate Descent

8.1 Ridge regression (L2 regularization)

The parameters can be discouraged from taking very large values by penalizing
the likelihood by their squares.

l = l0 −
λ2

2

K∑
k=1

|βk|2

This can be thought of as imposing a Gaussian prior distribution on the βk

parameters. Note that the intercept k = 0 term is left out of the regularization.
Most regression applications will not want to induce a bias in this term, and
there should be no risk of failing to converge so long as there is more than a
single value in the set of response variables y.

8
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This form of regression is particularly attractive in GLMs because the Jaco-
bian and Hessian are easily adjusted:

J → J− λ2β̃ (18)

H → H− λ2Ĩ (19)

where the tildes are a (sloppy) way of indicating zeros in the 0 index. Note that
the Hessian is negative-definite, so adding the regularization term does not risk
making it degenerate. In fact, it can help condition for small eigenvalues of the
Hessian.

Another way of denoting the above is with a Tikhonov matrix
Γ = diag(0,

√
λ2, . . . ,

√
λ2) which penalizes the likelihood by |Γβ|2 /2. This

makes the changes to the Jacobian and Hessian easier to express.

J → J− Γ⊺Γβ (20)

H → H− Γ⊺Γ (21)

The IRLS update equation is still quite simple if written in terms of solving
a new guess β′ in terms of the previous βlast.(

X⊺SX+ Γ2
)
β′ = X⊺

(
SXβlast + y − g−1(Xβlast)

)
(22)

Note that the regularization matrix only appears once, as a correction to the
diagonals of the Hessian.

8.2 Lasso (L1 regularization)

The lasso penalizes the likelihood by the sum of the absolute values of the
coefficients.

l = l0 − λ1

K∑
k=1

|βk|

This corresponds to a prior Laplace distribution for each parameter with width
λ−1
1 . It tends to set small coefficients to exactly zero, in contrast to ridge

regression which mostly makes large coefficients smaller.
There is difficulty in naively adjusting the Hessian and Jacobian using IRLS

because the likelihood is non-differentiable when βk = 0 for any k ≥ 1.
In the simplest case of OLS with orthogonal covariates (i.e. X⊺X = I)

then the magnitude of each parameter is reduced by λ1; if the absolute value is
already less than λ1 then it is set to zero.

βk → Sλ1 (βk) ≡ sgn(βk)max (0, |βk| − λ1)

The Alternating Direction Method of Multipliers (ADMM) can be used for
L1 regularization. This introduces additional variables to be updated in ex-
change for separating the non-smooth piece of the likelihood.
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β(k+1) = argminβ

(
−l(β) +

ρ

2

∣∣∣β − γ(k) + u(k)
∣∣∣2
2

)
(23)

γ(k+1) = argminγ

(
λ1 |γ|1 +

ρ

2

∣∣∣β(k+1) − γ + u(k)
∣∣∣2
2

)
(24)

= Sλ1/ρ

(
β(k+1) + u(k)

)
(25)

u(k+1) = u(k) + β(k+1) − γ(k+1) (26)

Presumably the iteration can start with γ(0)(β(0)) and u = 0, and ρ should
be able to be anything, so ρ = 1 should work. The first equation can be solved
by IRLS, and in the quadratic approximation, only one step could be taken
here. The u variable is the cumulative sum of the residuals between β and γ.
As long as the difference is added to u,k β and γ don’t necessarily have to be
tracked completely separately because each relies only on the previous iteration
of the other one.

In practice, the minimization over β in the first equation does not need to
performed to convergence. A single IRLS step can be executed instead, which
makes the L1 ADMM implementation simpler - just include the augmented
terms in the Hessian and Jacobian and run the γ and u updates in each iteration.

Another consideration is that ρ is often varied over time to promote conver-
gence, a practice called redisual balance. This also requires a rescaling of u for
each step that ρ is changed.

Note that in the case of completely correlated covariates, lasso does not
uniquely determine the coefficients. An L2 penalty breaks the likelihood sym-
metry, so if this is a possibility then the elastic net is recommended.

Further reading:

• Efficient L1-regularized logistic regression

• SO summary with useful links, in particular:

• ... Statistical Learning via the ADMM in particular Section 6.3

• glmnet paper

8.3 Elastic net (L1 + L2 regularization)

The elastic net includes both L1 and L2 terms. The L2 term can be included
by adding a constant diagonal to the Hessian, but it can also be included in the
ADMM update by modifying the γ update slightly:

γ(k+1) =
1

1 + λ2/ρ
Sλ1/ρ(β

(k+1) + u(k))

This can be derived by adding λ2|γ|22 to the function in the argmin over γ.
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8.4 TODO Effective degrees of freedom under regulariza-
tion

See wikipedia and this paper.

9 Saturated likelihood and deviance

The saturated likelihood is the likelihood of a model with enough free parameters
to fit every yi exactly. It represents the likelihood of the best possible fit, which
is often zero (OLS, binary logistic) but not always. As a function only of yi,
computing the saturated likelihood is tantamount to replacing xi ·β with g(yi).

lsat(y) =

N∑
i=1

η(g(y(i))) ·T(y(i))−A
(
η(g(y(i)))

)
The deviance, which measures the difference between the observations and

the model’s predictions for each data point, is given by2

D = −2 [l(y|X,β)− lsat(y)]

In OLS, this deviance is equal to the sum of squares of the residuals, and it
can be interpreted as a generalization of that quantity.

We also consider the contribution from a single observation

Di = −2
[
l(y(i)|x(i),β)− lsat(y

(i))
]

so that D = ΣiwiDi where in these expressions Di is the unweighted component
of the deviance for observation i.

The deviance residuals are a useful measurement of the discrepancy between
the response data and the model’s predictions, that aren’t sensitive to assump-
tions about the link function,

di = sign(e(i))
√
Di

where e(i) = y(i) − ŷ(i) are the response residuals.

10 Null likelihood

The null likelihood is the likelihood of a model where none of the covariates are
used. An intercept term is allowed, unless the original model explicitly fixed the
intercept β0 = 0. In other words, the null model is a model in which x · β = β.
It can be shown (by setting the gradient to zero) that the maximum likelihood is
found by E[y|β] = ȳ (even for non-canonical link functions), and thus β = g(ȳ).

For canonical link functions, η = β = g(ȳ), but in general

2This is a different D than the one used elsewhere for index of dispersion.
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l0(y) =

N∑
i=1

η(g(ȳ)) ·T(y(i))−A (η(g(ȳ)))

In the (unlikely) case of β = 0 being fixed in the model, then instead:

l0(y) =

N∑
i=1

η(0) ·T(y(i))−A (η(0))

When linear offset control factors are included, β cannot be solved analyt-
ically in general. In this case, a model can be re-fit using only the constant
intercept term.

11 Projection matrix and leverage

In OLS, the projection matrix P = X (X⊺X)
−1

X⊺ (also known as the influ-
ence matrix or hat matrix) maps the vector of response values to the vector of
predicted values Py = E[y|Xβ] ≡ ŷ. While this precise property cannot be
satisfied for all GLMs due to the non-linearities, an analogue can still be defined
that retains useful properties.

Pij ≡
∂ŷi
∂yj

There are a few possible conventions for this generalization, but all result in the
same diagonal. We’ll start with the fundamental-looking definition and expand
the total derivative in partials with respect to the fit parameters:

Pij ≡
∂ŷi
∂yj

(27)

=
[
∇βg

−1
(
x(i) · β

)]
· ∂β
∂yj

(28)

This is not symmetric, but it will turn out to be orthogonal to the response
residuals y − ŷ. The first term is a straightforward application of the chain
rule and derivatives of the partition function, and is equal to x(i)Siiη

′(i). The
second term can be derived by inspecting the IRLS step equation and perturbing
it around the minimum. Altogether this yields

P = η′SX
(
X⊺Wη′2SX

)−1
X⊺Wη′

where S,W,η′ are treated as diagonal matrices with elements as defined above.
Equivalently, the components of the projection matrix are (for the canonical
case)

Pij = −Siix
(i)⊺H−1x(j)wj
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where H is the Hessian matrix of the likelihood. Note that at the fit minimum,
this satisfies P2 = P exactly so it is a projection matrix3 and is orthogonal to
the response residuals P · (y − ŷ) = 0 as can be observed from the IRLS step
equation and the convergence of the parameters such that ∆β = 0.

11.1 Pearson residuals

The exact projection ŷ = Py such that the response residuals e = (I − P)y
only holds exactly for OLS. However, for sufficiently small perturbations

δe = δy − ∂ŷ

∂y
δy = (I−P)δy

To the extent that Cov[ŷ(i), y(i)] = PiiVar[y
(i)] (exact for OLS and approxi-

mate/asymtotic otherwise),

Var[e(i)] = Var[y(i)](1− hi) =
ϕSii

wi
(1− hi)

where ϕ is the dispersion parameter (often fixed to 1). This motivates the
definition of the studentized Pearson residuals, which are expected to have a
mean of 0 and a variance of 1.

r̃(i) ≡
√

wi

ϕSii(1− hi)
e(i)

11.2 Leave-one-out (LOO) corrections

It can be shown4 that the change in the parameters β(−i) resulting from exclud-
ing an observation i is, using a single-step approximation (for the unweighted,
canonical case):

(X⊺SX)∆β(−i) =
x(i)e(i)

1− hi

where e(i) ≡ y(i)− ŷ(i) are the response residuals. 5 The factor hi ≡ Pii is called
the leverage of the ith observation, and is a measure of how strongly a given
observation affects its corresponding prediction. The more general version of this
expression has additional factors of the ith weight and eta-derivative multiplying
the RHS.

3However, regularization seems to break this property as P2 = P+O(λ).
4This derivation uses the Sherman-Morrison formula

(A+ uv⊺)−1 = A−1 −
(
A−1u

) (
v⊺A−1

)
1 + v⊺A−1u

5In the case of L1/L2 regularization, the Hessian is adjusted as normal and the expression

becomes −H∆β(−i) = 1
1−hi

(
x(i)e(i) − λ1sign(β)

)
. Perhaps a full ADMM iteration (without

IRLS steps) would be required to solve this exactly. However, if a quadratic likelihood in ∆β
is considered, perhaps a modification of the exact OLS L1 adjustment can be applied.
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By Taylor expanding to first order in ∆β(−i), the leave-out residual that
corrects for the influence of the observation itself is given by e(−i) ≡ y(i)−ŷ(−i) =
e(i)

1−hi
. This is useful for outlier detection.

11.2.1 Likelihood

Since the gradient of the likelihood function is zero at the minimum, the 2nd-
order Taylor expansion gives the leading term for the change in the total likeli-
hood.

∆l(−i) =
1

2
∆β(−i)⊺H∆β(−i) (29)

=
1

2

wix
(i)⊺e(i)

1− hi
H−1wix

(i)e(i)

1− hi
(30)

= −1

2

e(i)2Piiwi

(1− hi)2Sii
(31)

= −1

2

hiwi

1− hi

e(i)2

(1− hi)Sii
(32)

(33)

The effect on the total deviance is:

D(−i) = −2
[
l(−i) − lsat

]
(34)

= D − 2∆l(−i) (35)

= D +
hi

(1− hi)2
r(i)2 (36)

where r(i) ≡
√

wi

Sii
e(i) are the (non-studentized) Pearson residuals. For a

single term, the change works out to

D
(−j)
i −Di =

1

(1− hj)Sii

(
2Pije

(i)e(j) +
P 2
ij

1− hj
e(j)2

)

which for the self-change (i.e. j = i)

D
(−i)
i −Di =

hir
(i)2

1− hi

(
2 +

hi

1− hi

)
11.2.2 Dispersion parameter

When the dispersion parameter ϕ is free, it is typically estimated via the de-
viance.

ϕ =
D

N −K

14



When leaving one observation out, the estimation becomes

ϕ(−i) =
1

N −K − 1

(
Σj ̸=iD

(−i)
j

)
(37)

=
1

N −K − 1

(
D(−i) −D

(−i)
i

)
(38)

=
1

N −K − 1

[
D −Di −

hi

1− hi
r(i)2

]
(39)

in terms of the Pearson results r(i).
With variance weights, the denominator has a more complicated form to

correct. Defining moments of the variance weights v1 = Σiwi and v2 = Σiw
2
i ,

ϕ(−i) =
D(−i) −D

(−i)
i

v
(−i)
1 −K

v
(−i)
2

v
(−i)
1

(40)

=
D −Di − hi

1−hi
r(i)2

v1 − wi −K
v2−w2

i

v1−wi

(41)

Note that both the deviance terms Di and the squared pearson residuals r(i)2

include a factor of a variance weight wi in this formulation.
http://people.stat.sfu.ca/~raltman/stat402/402L25.pdf

https://www.stats.ox.ac.uk/~steffen/teaching/bs2HT9/glim.pdf

See numpy.cov documentation for possible guidelines on how to handle fre-
quency and variance weights.

11.2.3 Studentized deviance residuals

The externally studentized residuals are, under certain conditions, t-distributed
with N−K−1 degrees of freedom. They are constructed by removing the effect
of each data point on the fit itself when computing the deviance residuals.

t̃i = sign(e(i))

√
D

(−i)
i

ϕ(−i)

11.2.4 Cook’s distance

The Cook’s distance is another measurement of how much the fit is impacted
by each observation. For GLM’s, it’s defined as

Ci =

(
β − β(i)

)⊺
Cov[β]−1

(
β − β(i)

)
Kϕ

(42)

=

(
β − β(i)

)⊺
(X⊺WSX)

(
β − β(i)

)
Kϕ

(43)

=
hi

(1− hi)2
r(i)2

Kϕ
(44)
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where r(i) =
√

wi

Sii
e(i) are the Pearson residuals.

12 TODO Goodness of fit

• Compare log-likelihoods of fit model to saturated model. The total de-
viance should be Chi-squared distributed with N −K d.o.f. under suffi-
ciently normal conditions. See these notes on computing the deviance.

• Aikaike and Bayesian information criteria

• Generalized R2

13 TODO Significance of individual parameters

The difference between the likelihood at the fitted values and the likelihood
with one parameter fixed to zero should follow a χ2 distribution with 1 degree
of freedom and implies the Z-score of the parameter. The likelihood should
possibly be re-minimized over the other parameters to allow them to describe
some of what the parameter of interest captured; however, this could cause to
correlated parameters to both appear insignificant when at least one of them is
highly relevant.

14 TODO Numerical considerations

15 Other references

• https://www.stat.cmu.edu/~ryantibs/advmethods/notes/glm.pdf

• https://bwlewis.github.io/GLM/

• https://statmath.wu.ac.at/courses/heather_turner/glmCourse_001.

pdf

• Maalouf, M., & Siddiqi, M. (2014). Weighted logistic regression for large-
scale imbalanced and rare events data. Knowledge-Based Systems, 59,
142–148.

• Convergence problems in GLMs
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16 Case studies

16.1 Linear (Gaussian)

The probability distribution function (PDF) of a normally-distributed variable
with the standard parameterization is

f(y;µ, σ2) =
1√
2πσ2

e−
(y−µ)2

2σ2

or equivalently:

log f(y;µ, σ2) = − (y − µ)2

2σ2
− 1

2
log(2πσ2) (45)

=
µy − µ2

2

σ2
− y2

2σ2
− 1

2
log(2πσ2) (46)

The common approach is to use a natural description that uses only the linear

term in y, taking the dispersion parameter ϕ = σ2 so that η = µ, A(η) = η2

2 ,

and B(y, ϕ) = − y2

2ϕ − 1
2 log(2πϕ).

6 The canonical link function is the identity

because if η = x⊺β we clearly have µ = x⊺β. The variance function is V (µ) = 1.
Even with variable weights, the log-likelihood function is simple.

l = −1

2
(y −X⊺β)⊺W(y −X⊺β)

This form shows the equivalence to weighted least squares (WLS), or ordinary
least squares (OLS) when the weights are identical for each point. The correlated
case is easily included by letting W be the inverse covariance matrix of the
observed y(i). The β that maximizes the likelihood can be found analytically,

β̂ = (X⊺WX)−1X⊺Wy

although if the estimated parameters are far from zero an additional IRLS step
may be useful for improved numerical accuracy.

An alternative application is to include both y and y2 in the sufficient statis-
tics T⊺(y) = [y, y2]. This leads to natural parameters η⊺ =

[
µ
σ2 ,− 1

2σ2

]
with a

trivial dispersion parameter ϕ = 1. Up to a constant the log-partition function

is A(η1, η2) = − η2
1

4η2
− 1

2 log(−η2). This is likely a good application for a non-

canonical link function for η2, for instance η2 = − exp(x · β2), since σ2 > 0 so
η2 < 0. Here the variance function V (µ) could possibly be replaced by a covari-
ance function of the two-component expected values of µ and σ2, but checking
this should require some more careful analysis.

6Exercise: Check that the mean and variance of y are µ and σ2, respectively, by taking
first and second derivatives of A(η) while making sure to include the dispersion parameter
factor in the expression for the variance.
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16.2 Logistic (Bernoulli)

The PDF of the Bernoulli distribution is

f(y; p) = py(1− p)1−y

or equivalently

log f(y; p) = y log p+ (1− y) log(1− p) (47)

= y log

(
p

1− p

)
+ log(1− p) (48)

where y takes a value of either 0 or 1. The natural parameter is η = log
(

p
1−p

)
=

logit(p) and as p = µ is the mean of the Bernoulli distribution the logit function
is also the canonical link function. In terms of the natural parameter the log-
partition function is A(η) = log (1 + eη). With the simple convention of ϕ = 1,
the variance function is V (µ) = µ(1− µ).

16.3 Poisson

The Poisson distribution for non-negative integer y is

f(y;λ) =
λye−λ

y!

or equivalently
log f(y;λ) = y log λ− λ− log(y!)

The mean and variance are both equal to λ, so the natural parameter is η = log λ
and the canonical link function is g(µ) = log µ. The log-partition is A(η) = eη

and B(y) = − log(y!). The dispersion parameter is taken to be ϕ = 1 and the
variance function is V (µ) = µ.

16.4 Exponential

While exponentially-distributed error terms are not common, this distribution is
still a useful case study because the distribution itself is mathematically simple
but the constraint on the distribution’s parameter motivates a non-canonical
link function. The PDF for an exponentially-distributed positive real value y is

f(y;λ) =

{
λe−λy for y ≥ 0

0 for y < 0

with λ > 0 and the log-PDF is

log f(y;λ) = −λy + log λ

where y ≥ 0. The natural parameter is η = −λ and the log-partition function
is A(η) = − log(−η). Since the mean of the distribution is µ = − 1

η = 1
λ ,

18



the canonical link function is the negative inverse g0(µ) = − 1
µ . The variance

is Var(y|η) = 1
η2 or Var(y|λ) = 1

λ2 so with the simple choice of dispersion

parameter ϕ = 1 the variance function is V (µ) = µ2.
The canonical link function − 1

µ = x⊺β does not prohibit values of µ <
0. The extent to which this is problematic will depend on the data points
themselves, but we will show how to work around this as an example.

Consider the parameterization η = − exp(−ω) where ω = x⊺β. The mean
and variance are eω and e2ω, respectively, so the implied link function is loga-
rithmic g(µ) = log µ = x⊺β. It is instructive to write out the likelihood and its
first and second derivatives in this parameterization7.

l =

N∑
i=1

[
− exp

(
−ω(i)

)
y(i) − ω(i)

]
(49)

∇βl =

N∑
i=1

x(i)
[
exp

(
−ω(i)

)
y(i) − 1

]
(50)

∇β∇⊺
βl = −

N∑
i=1

x(i)x⊺(i) exp
(
−ω(i)

)
y(i) (51)

Note that the exponential distribution is a special case of the gamma dis-
tribution with α = 1. In practice using a gamma GLM may often be a better
choice, but a similar issue arises with negative values so non-canonical link func-
tions are often used there as well.

16.5 Binomial (fixed n)

The binomial distribution describes a variable y that can take values in a finite
range from 0 to n inclusive. It is in the exponential family for a fixed n, which
is usually an obvious constraint based on the maximum logically possible value
for y. The PDF is

f(y;n, p) =

(
n

y

)
py(1− p)n−y

or

log f(y;n, p) = y log p+ (n− y) log(1− p) + log n!− log y!− log[(n− y)!] (52)

= y log

(
p

1− p

)
+ n log(1− p) +B(y, n) (53)

and up to factors of n the analysis is similar to the logistic (Bernoulli) case.
The natural parameter is η = logit(p), the log-partition function is A(η) =
n log(1+eη), the mean is µ = np, and the variance is np(1−p). With dispersion
parameter ϕ = 1, the variance function is V (µ) = µ

(
1− µ

n

)
. By writing η in

terms of µ it is seen that the canonical link function is g(µ) = log
(

µ
n−µ

)
.

7Exercise: Verify that the expression holds both by direct derivation and by applying the
equations for the derivatives as a function of η and its derivatives.
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16.6 Gamma

The gamma distribution has two parameters, but it turns out that the shape
parameter α is often treated as the same for every observation, allowing for the
β parameter to be predicted by x ·β. See these notes. This seems analogous to
the situations in OLS where the variance σ2 is the same for each data point so
the minimization is unaffected by its value.

The PDF of the gamma distribution with the α, β parameterization is

f(y;α, β) =
βαyα−1e−βy

Γ(α)

or equivalently

log f(y;α, β) = −βy + (α− 1) log y + α log β − log Γ(α)

where it is clear that the sufficient statistics should include at least one of
[y, log y] with corresponding natural parameters [−β, α− 1].

We will start the analysis a bit differently than the other distributions we’ve
looked at so far, in order to try to get to the simplest version as quickly as
possible. The mean and variance of the gamma distribution are known to be
α/β and α/β2, respectively. The variance could thus be written as either8

Var[y] = 1
βµ = 1

αµ
2 with dispersion factor ϕ being the reciprocal of either β or

α, respectively. It turns out that the second choice, with ϕ = 1
α and V (µ) = µ2,

is the most straightforward.

log f(y;µ, ϕ) =
− 1

µy − log µ

ϕ
+B(y, ϕ)

In fact, other than theB(y, ϕ) term this looks just like the case of the exponential
distribution with λ = 1/µ, but with a non-unity dispersion parameter that does
not affect the regression itself.

16.7 Negative binomial (fixed r)

The negative binomial distribution is an over-dispersed Poisson distribution, in
that its support is over the non-negative integers but its variance is greater than
its mean.

f(y; r, p) =
pr(1− p)y

yB(r, y)
(54)

log f(y; r, p) = y log(1− p) + r log p− log y − log Beta(r, y) (55)

Like the binomial distribution, the negative binomial distribution is in the
exponential family if and only if one of its standard parameters (r) is held fixed.

8Actually by this logic the variance function could be any power of µ with the right powers
of α and β as the dispersion factor, but for simplicity we’ll focus on the options that allow ϕ
to be written only as a function of one or the other.
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However, while the choice of n in a binomial distribution is typically obvious,
it is not usually so clear how to select a value for r in the negative binomial

distribution. In terms of the index of dispersion D = Var[y]
E[y] and the mean µ, r

is given by9:

r =
µ

D − 1

Assuming that a reasonable choice of r can be selected, the natural parameter
is η = log(1− p), the log-partition function is A(η) = −r log(1− eη), the mean

is µ = r(1−p)
p , the canonical link function is g(µ) = log µ

r+µ . With the obvious

dispersion parameter ϕ = 1 the variance function is V (µ) = µ
(
1 + µ

r

)
. Since

0 < p < 1, a non-canonical link function might be useful, such as the one implied
by η = − exp(−x⊺β).

16.8 Inverse Gaussian

The inverse Gaussian (also known as the Wald) distribution has a somewhat
misleading name – it is NOT the distribution of the inverse of a Gaussian-
distributed parameter. Rather it is the distribution of the time it takes for a
Gaussian process to drift to a certain level.

f(y;µ, λ) =

√
λ

2πy3
e
−λ(y−µ)2

2µ2y (56)

log f(y;µ, λ) = −λ(y − µ)2

2µ2y
+

1

2
log

λ

2πy3
(57)

= − λ

2µ2
y − λ

2

1

y
+

λ

µ
+

1

2
log λ+B(y) (58)

The sufficient statistics are therefore T(y)⊺ = [y, 1/y] with corresponding natu-
ral parameters η⊺ = [−λ/2µ2,−λ/2], and the log-partition function is A(η) =
−2

√
η1η2− 1

2 log(−2η2). The expected values of these statistics are E[T⊺(y);µ, λ] =

[µ, 1/µ+ 1/λ] or E[T⊺(y);η] =
[√

η2

η1
,
√

η1

η2
− 1

2η2

]
.

16.9 Others

Many other distributions are in the exponential family and should be amenable
in principle to a GLM model.

• Chi-squared

• Inverse gamma

9It is a curious fact that the natural parameter η is a simple function of the index of
dispersion:

η = − logD
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• Beta

• Categorical

• Multinomial

• Dirichlet

• Normal-gamma

Wikipedia has a summary table with many properties of specific distribu-
tions.
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